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(iii) First, f(.) is a density, as it is non-negative, and integrates to 1:

∫

f(x) dx =
1

2
1
2 nΓ

(
1
2n

)

∫ ∞

0

x
1
2 n−1 exp

(

−1
2
x

)

dx

=
1

Γ
(

1
2n

)

∫ ∞

0

u
1
2 n−1 exp(−u) du (u :=

1
2
x)

= 1,

by definition of the Gamma function. Its MGF is

M(t) =
1

2
1
2 nΓ

(
1
2n

)

∫ ∞

0

etxx
1
2 n−1 exp

(

−1
2
x

)

dx

=
1

2
1
2 nΓ

(
1
2n

)

∫ ∞

0

x
1
2 n−1 exp

(

−1
2
x(1 − 2t)

)

dx.

Substitute u := x(1 − 2t) in the integral. One obtains

M(t) = (1 − 2t)−
1
2 n 1

2
1
2 nΓ

(
1
2n

)

∫ ∞

0

u
1
2 n−1e−u du = (1 − 2t)−

1
2 n,

by definition of the Gamma function.

Chi-square Addition Property. If X1, X2 are independent, χ2(n1) and χ2(n2),
X1 + X2 is χ2(n1 + n2).

Proof

X1 = U2
1 + . . . + U2

n1
, X2 = U2

n1+1 + . . . + U2
n1+n2

, with Ui iid N(0, 1).
So X1 + X2 = U2

1 + · · · + U2
n1+n2

, so X1 + X2 is χ2(n1 + n2).

Chi-Square Subtraction Property. If X = X1 + X2, with X1 and X2 indepen-
dent, and X ∼ χ2(n1 + n2), X1 ∼ χ2(n1), then X2 ∼ χ2(n2).

Proof

As X is the independent sum of X1 and X2, its MGF is the product of their
MGFs. But X , X1 have MGFs (1 − 2t)−

1
2 (n1+n2), (1 − 2t)−

1
2 n1 . Dividing, X2

has MGF (1 − 2t)−
1
2 n2 . So X2 ∼ χ2(n2).
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2.2 Change of variable formula and Jacobians

Recall from calculus of several variables the change of variable formula for
multiple integrals. If in

I :=
∫

. . .

∫

A

f(x1, . . . , xn) dx1 . . . dxn =
∫

A

f(x) dx

we make a one-to-one change of variables from x to y — x = x(y) or xi =
xi(y1, . . . , yn) (i = 1, . . . , n) — let B be the region in y-space corresponding
to the region A in x-space. Then

I =
∫

A

f(x) dx =
∫

B

f(x(y))
∣
∣
∣
∣
∂x
∂y

∣
∣
∣
∣ dy =

∫

B

f(x(y))|J | dy,

where J , the determinant of partial derivatives

J :=
∂x
∂y

=
∂(x1, · · · , xn)
∂(y1, · · · , yn)

:= det
(

∂xi

∂yj

)

is the Jacobian of the transformation (after the great German mathematician
C. G. J. Jacobi (1804–1851) in 1841 – see e.g. Dineen (2001), Ch. 14). Note that
in one dimension, this just reduces to the usual rule for change of variables:
dx = (dx/dy).dy. Also, if J is the Jacobian of the change of variables x → y
above, the Jacobian ∂y/∂x of the inverse transformation y → x is J−1 (from
the product theorem for determinants: det(AB) = detA.detB – see e.g. Blyth
and Robertson (2002a), Th. 8.7).

Suppose now that X is a random n-vector with density f(x), and we wish
to change from X to Y, where Y corresponds to X as y above corresponds to
x: y = y(x) iff x = x(y). If Y has density g(y), then by above,

P (X ∈ A) =
∫

A

f(x) dx =
∫

B

f(x(y))
∣
∣
∣
∣
∂x
∂y

∣
∣
∣
∣ dy,

and also
P (X ∈ A) = P (Y ∈ B) =

∫

B

g(y)dy.

Since these hold for all B, the integrands must be equal, giving

g(y) = f(x(y))|∂x/∂y|

as the density g of Y.
In particular, if the change of variables is linear:

y = Ax+b, x = A−1y−A−1b, ∂y/∂x = |A|, ∂x/∂y = |A−1| = |A|−1
.
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2.3 The Fisher F-distribution

Suppose we have two independent random variables U and V , chi–square dis-
tributed with degrees of freedom (df) m and n respectively. We divide each by
its df, obtaining U/m and V/n. The distribution of the ratio

F :=
U/m

V/n

will be important below. It is called the F -distribution with degrees of freedom
(m, n), F (m, n). It is also known as the (Fisher) variance-ratio distribution.

Before introducing its density, we define the Beta function,

B(α, β) :=
∫ 1

0

xα−1(1 − x)β−1dx,

wherever the integral converges (α > 0 for convergence at 0, β > 0 for conver-
gence at 1). By Euler’s integral for the Beta function,

B(α, β) =
Γ (α)Γ (β)
Γ (α + β)

(see e.g. Copson (1935), §9.3). One may then show that the density of F (m, n) is

f(x) =
m

1
2 mn

1
2 n

B(1
2m, 1

2m)
.

x
1
2 (m−2)

(mx + n)
1
2 (m+n)

(m, n > 0, x > 0)

(see e.g. Kendall and Stuart (1977), §16.15, §11.10; the original form given by
Fisher is slightly different).

There are two important features of this density. The first is that (to within
a normalisation constant, which, like many of those in Statistics, involves ra-
tios of Gamma functions) it behaves near zero like the power x

1
2 (m−2) and near

infinity like the power x− 1
2 n, and is smooth and unimodal (has one peak). The

second is that, like all the common and useful distributions in Statistics, its
percentage points are tabulated. Of course, using tables of the F -distribution
involves the complicating feature that one has two degrees of freedom (rather
than one as with the chi-square or Student t-distributions), and that these
must be taken in the correct order. It is sensible at this point for the reader
to take some time to gain familiarity with use of tables of the F -distribution,
using whichever standard set of statistical tables are to hand. Alternatively,
all standard statistical packages will provide percentage points of F , t, χ2, etc.
on demand. Again, it is sensible to take the time to gain familiarity with the
statistical package of your choice, including use of the online Help facility.

One can derive the density of the F distribution from those of the χ2 distri-
butions above. One needs the formula for the density of a quotient of random
variables. The derivation is left as an exercise; see Exercise 2.1. For an intro-
duction to calculations involving the F distribution see Exercise 2.2.
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2.4 Orthogonality

Recall that a square, non-singular (n × n) matrix A is orthogonal if its inverse
is its transpose:

A−1 = AT .

We now show that the property of being independent N(0, σ2) is preserved
under an orthogonal transformation.

Theorem 2.2 (Orthogonality Theorem)

If X = (X1, . . . , Xn)T is an n-vector whose components are independent ran-
dom variables, normally distributed with mean 0 and variance σ2, and we
change variables from X to Y by

Y := AX

where the matrix A is orthogonal, then the components Yi of Y are again
independent, normally distributed with mean 0 and variance σ2.

Proof

We use the Jacobian formula. If A = (aij), since ∂Yi/∂Xj = aij , the Jacobian
∂Y/∂X = |A|. Since A is orthogonal, AAT = AA−1 = I. Taking determi-
nants, |A|.|AT | = |A|.|A| = 1: |A| = 1, and similarly |AT | = 1. Since length is
preserved under an orthogonal transformation,

∑n

1
Y 2

i =
∑n

1
X2

i .

The joint density of (X1, . . . , Xn) is, by independence, the product of the
marginal densities, namely

f(x1, . . . , xn) =
∏n

i=1

1√
2π

exp
{

−1
2
x2

i

}

=
1

(2π)
1
2 n

exp
{

−1
2

∑n

1
x2

i

}

.

From this and the Jacobian formula, we obtain the joint density of (Y1, . . . , Yn)
as

f(y1, . . . , yn) =
1

(2π)
1
2 n

exp
{

−1
2

∑n

1
y2

i

}

=
∏n

1

1√
2π

exp
{

−1
2
y2

i

}

.

But this is the joint density of n independent standard normals – and so
(Y1, . . . , Yn) are independent standard normal, as claimed.
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Helmert’s Transformation.
There exists an orthogonal n × n matrix P with first row

1√
n

(1, . . . , 1)

(there are many such! Robert Helmert (1843–1917) made use of one when
he introduced the χ2 distribution in 1876 – see Kendall and Stuart (1977),
Example 11.1 – and it is convenient to use his name here for any of them.) For,
take this vector, which spans a one-dimensional subspace; take n−1 unit vectors
not in this subspace and use the Gram–Schmidt orthogonalisation process (see
e.g. Blyth and Robertson (2002b), Th. 1.4) to obtain a set of n orthonormal
vectors.

2.5 Normal sample mean and sample variance

For X1, . . . , Xn independent and identically distributed (iid) random variables,
with mean μ and variance σ2, write

X :=
1
n

∑n

1
Xi

for the sample mean and

S2 :=
1
n

∑n

1
(Xi − X)2

for the sample variance.

Note 2.3

Many authors use 1/(n − 1) rather than 1/n in the definition of the sample
variance. This gives S2 as an unbiased estimator of the population variance
σ2. But our definition emphasizes the parallel between the bar, or average,
for sample quantities and the expectation for the corresponding population
quantities:

X =
1
n

∑n

1
Xi ↔ EX,

S2 =
(
X − X

)2 ↔ σ2 = E
[
(X − EX)2

]
,

which is mathematically more convenient.
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Theorem 2.4

If X1, . . . , Xn are iid N(μ, σ2),
(i) the sample mean X and the sample variance S2 are independent,
(ii) X is N(μ, σ2/n),
(iii) nS2/σ2 is χ2(n − 1).

Proof

(i) Put Zi := (Xi − μ)/σ, Z := (Z1, . . . , Zn)T ; then the Zi are iid N(0, 1),

Z = (X − μ)/σ, nS2/σ2 =
∑n

1
(Zi − Z)2.

Also, since
∑n

1
(Zi − Z)2 =

∑n

1
Z2

i − 2Z
∑n

1
Zi + nZ

2

=
∑n

1
Z2

i − 2Z.nZ + nZ
2

=
∑n

1
Z2

i − nZ
2

:
∑n

1
Z2

i =
∑n

1
(Zi − Z)2 + nZ

2
.

The terms on the right above are quadratic forms, with matrices A, B say, so
we can write ∑n

1
Z2

i = ZT AZ + ZT BX. (∗)
Put W := PZ with P a Helmert transformation – P orthogonal with first row
(1, . . . , 1)/

√
n:

W1 =
1√
n

∑n

1
Zi =

√
nZ; W 2

1 = nZ
2

= ZT BZ.

So
n∑

2

W 2
i =

n∑

1

W 2
i −W 2

1 =
n∑

1

Z2
i −ZT BZ = ZT AZ =

n∑

1

(Zi−Z)2 = nS2/σ2.

But the Wi are independent (by the orthogonality of P ), so W1 is independent
of W2, . . . , Wn. So W 2

1 is independent of
∑n

2W 2
i . So nS2/σ2 is independent of

n(X − μ)2/σ2, so S2 is independent of X, as claimed.
(ii) We have X = (X1 + . . . + Xn)/n with Xi independent, N(μ, σ2), so
with MGF exp(μt + 1

2σ2t2). So Xi/n has MGF exp(μt/n + 1
2σ2t2/n2), and X

has MGF
n∏

1

exp
(

μt/n +
1
2
σ2t2/n2

)

= exp
(

μt +
1
2
σ2t2/n

)

.

So X is N(μ, σ2/n).
(iii) In (∗), we have on the left

∑n
1Z2

i , which is the sum of the squares of n

standard normals Zi, so is χ2(n) with MGF (1−2t)−
1
2 n. On the right, we have
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two independent terms. As Z is N(0, 1/n),
√

nZ is N(0, 1), so nZ
2

= ZT BZ

is χ2(1), with MGF (1 − 2t)−
1
2 . Dividing (as in chi-square subtraction above),

ZT AZ =
∑n

1 (Zi − Z)2 has MGF (1 − 2t)−
1
2 (n−1). So ZT AZ =

∑n
1 (Zi − Z)2

is χ2(n − 1). So nS2/σ2 is χ2(n − 1).

Note 2.5

1. This is a remarkable result. We quote (without proof) that this property
actually characterises the normal distribution: if the sample mean and sample
variance are independent, then the population distribution is normal (Geary’s
Theorem: R. C. Geary (1896–1983) in 1936; see e.g. Kendall and Stuart (1977),
Examples 11.9 and 12.7).
2. The fact that when we form the sample mean, the mean is unchanged, while
the variance decreases by a factor of the sample size n, is true generally. The
point of (ii) above is that normality is preserved. This holds more generally: it
will emerge in Chapter 4 that normality is preserved under any linear operation.

Theorem 2.6 (Fisher’s Lemma)

Let X1, . . . , Xn be iid N(0, σ2). Let

Yi =
∑n

j=1
cijXj (i = 1, . . . , p, p < n),

where the row-vectors (ci1, . . . , cin) are orthogonal for i = 1, . . . , p. If

S2 =
∑n

1
X2

i −
∑p

1
Y 2

i ,

then
(i) S2 is independent of Y1, . . . , Yp,
(ii) S2 is χ2(n − p).

Proof

Extend the p × n matrix (cij) to an n × n orthogonal matrix C = (cij) by
Gram–Schmidt orthogonalisation. Then put

Y := CX,

so defining Y1, . . . , Yp (again) and Yp+1, . . . , Yn. As C is orthogonal, Y1, . . . , Yn

are iid N(0, σ2), and
∑n

1Y 2
i =

∑n
1X2

i . So

S2 =
(∑n

1
−

∑p

1

)
Y 2

i =
∑n

p+1
Y 2

i

is independent of Y1, . . . , Yp, and S2/σ2 is χ2(n − p).
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2.6 One-Way Analysis of Variance

To compare two normal means, we use the Student t-test, familiar from your
first course in Statistics. What about comparing r means for r > 2?

Analysis of Variance goes back to early work by Fisher in 1918 on math-
ematical genetics and was further developed by him at Rothamsted Exper-
imental Station in Harpenden, Hertfordshire in the 1920s. The convenient
acronym ANOVA was coined much later, by the American statistician John W.
Tukey (1915–2000), the pioneer of exploratory data analysis (EDA) in Statis-
tics (Tukey (1977)), and coiner of the terms hardware, software and bit from
computer science.

Fisher’s motivation (which arose directly from the agricultural field trials
carried out at Rothamsted) was to compare yields of several varieties of crop,
say – or (the version we will follow below) of one crop under several fertiliser
treatments. He realised that if there was more variability between groups (of
yields with different treatments) than within groups (of yields with the same
treatment) than one would expect if the treatments were the same, then this
would be evidence against believing that they were the same. In other words,
Fisher set out to compare means by analysing variability (‘variance’ – the term
is due to Fisher – is simply a short form of ‘variability’).

We write μi for the mean yield of the ith variety, for i = 1, . . . , r. For each i,
we draw ni independent readings Xij . The Xij are independent, and we assume
that they are normal, all with the same unknown variance σ2:

Xij ∼ N(μi, σ
2) (j = 1, . . . , ni, i = 1, . . . , r).

We write

n :=
∑r

1
ni

for the total sample size.
With two suffices i and j in play, we use a bullet to indicate that the suffix

in that position has been averaged out. Thus we write

Xi•, or Xi, :=
1
ni

∑ni

j=1
Xij (i = 1, . . . , r)

for the ith group mean (the sample mean of the ith sample)

X••, or X, :=
1
n

∑r

i=1

∑ni

j=1
Xij =

1
n

∑r

i=1
niXi•
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for the grand mean and,

S2
i :=

1
ni

∑ni

j=1
(Xij − Xi•)2

for the ith sample variance.
Define the total sum of squares

SS :=
∑r

i=1

∑ni

j=1
(Xij − X••)2 =

∑

i

∑

j
[(Xij − Xi•) + (Xi• − X••)]2.

As
∑

j
(Xij − Xi•) = 0

(from the definition of Xi• as the average of the Xij over j), if we expand the
square above, the cross terms vanish, giving

SS =
∑

i

∑

j
(Xij − Xi•)2

+
∑

i

∑

j
(Xij − Xi•)(Xi• − X••)

+
∑

i

∑

j
(Xi• − X••)2

=
∑

i

∑

j
(Xij − Xi•)2 +

∑

i

∑

j
Xi• − X••)2

=
∑

i
niS

2
i +

∑

i
ni(Xi• − X••)2.

The first term on the right measures the amount of variability within groups.
The second measures the variability between groups. We call them the sum of
squares for error (or within groups), SSE, also known as the residual sum of
squares, and the sum of squares for treatments (or between groups), respectively:

SS = SSE + SST,

where
SSE :=

∑

i
niS

2
i , SST :=

∑

i
ni(Xi• − X••)2.

Let H0 be the null hypothesis of no treatment effect:

H0 : μi = μ (i = 1, . . . , r).

If H0 is true, we have merely one large sample of size n, drawn from the
distribution N(μ, σ2), and so

SS/σ2 =
1
σ2

∑

i

∑

j
(Xij − X••)2 ∼ χ2(n − 1) under H0.

In particular,
E[SS/(n − 1)] = σ2 under H0.
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Whether or not H0 is true,

niS
2
i /σ2 =

1
σ2

∑

j
(Xij − Xi•)2 ∼ χ2(ni − 1).

So by the Chi-Square Addition Property

SSE/σ2 =
∑

i
niS

2
i /σ2 =

1
σ2

∑

i

∑

j
(Xij − Xi•)2 ∼ χ2(n − r),

since as n =
∑

ini, ∑r

i=1
(ni − 1) = n − r.

In particular,
E[SSE/(n− r)] = σ2.

Next,

SST :=
∑

i

ni(Xi• −X••)2, where X•• =
1
n

∑

i

niXi•, SSE :=
∑

i

niS
2
i .

Now S2
i is independent of Xi•, as these are the sample variance and sample

mean from the ith sample, whose independence was proved in Theorem 2.4.
Also S2

i is independent of Xj• for j �= i, as they are formed from different
independent samples. Combining, S2

i is independent of all the Xj•, so of their
(weighted) average X••, so of SST , a function of the Xj• and of X••. So
SSE =

∑
iniS

2
i is also independent of SST .

We can now use the Chi-Square Subtraction Property. We have, under H0,
the independent sum

SS/σ2 = SSE/σ2 +ind SST/σ2.

By above, the left-hand side is χ2(n − 1), while the first term on the right is
χ2(n − r). So the second term on the right must be χ2(r − 1). This gives:

Theorem 2.7

Under the conditions above and the null hypothesis H0 of no difference of
treatment means, we have the sum-of-squares decomposition

SS = SSE +ind SST,

where SS/σ2 ∼ χ2(n − 1), SSE/σ2 ∼ χ2(n − r) and SSE/σ2 ∼ χ2(r − 1).
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When we have a sum of squares, chi-square distributed, and we divide by
its degrees of freedom, we will call the resulting ratio a mean sum of squares,
and denote it by changing the SS in the name of the sum of squares to MS.
Thus the mean sum of squares is

MS := SS/df(SS) = SS/(n − 1)

and the mean sums of squares for treatment and for error are

MST := SST/df(SST ) = SST/(r − 1),

MSE := SSE/df(SSE) = SSE/(n − r).

By the above,
SS = SST + SSE;

whether or not H0 is true,

E[MSE] = E[SSE]/(n − r) = σ2;

under H0,

E[MS] = E[SS]/(n − 1) = σ2, and so also E[MST ]/(r − 1) = σ2.

Form the F -statistic
F := MST/MSE.

Under H0, this has distribution F (r− 1, n− r). Fisher realised that comparing
the size of this F -statistic with percentage points of this F -distribution gives
us a way of testing the truth or otherwise of H0. Intuitively, if the treatments
do differ, this will tend to inflate SST , hence MST , hence F = MST/MSE.
To justify this intuition, we proceed as follows. Whether or not H0 is true,

SST =
∑

i
ni(Xi• − X••)2 =

∑

i
niX

2
i• − 2X••

∑

i
niXi• + X2

••
∑

i
ni

=
∑

i
niX

2
i• − nX2

••,

since
∑

iniXi• = nX•• and
∑

ini = n. So

E[SST ] =
∑

i
niE

[
X2

i•
]
− nE

[
X2

••
]

=
∑

i
ni

[
var(Xi•) + (EXi•)2

]
− n

[
var(X••) + (EX••)2

]
.

But var(Xi•) = σ2/ni,

var(X••) = var(
1
n

∑r

i=1
niXi•) =

1
n2

∑r

1
n2

i var(Xi•),

=
1
n2

∑r

1
n2

i σ
2/ni = σ2/n
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(as
∑

ini = n). So writing

μ :=
1
n

∑

i
niμi = EX•• = E

1
n

∑

i
niXi•,

E(SST ) =
∑r

1
ni

[
σ2

ni
+ μ2

i

]

− n

[
σ2

n
+ μ2

]

= (r − 1)σ2 +
∑

i
niμ

2
i − nμ2

= (r − 1)σ2 +
∑

i
ni(μi − μ)2

(as
∑

ini = n, nμ =
∑

iniμi). This gives the inequality

E[SST ] ≥ (r − 1)σ2,

with equality iff

μi = μ (i = 1, . . . , r), i.e. H0 is true.

Thus when H0 is false, the mean of SST increases, so larger values of SST , so of
MST and of F = MST/MSE, are evidence against H0. It is thus appropriate
to use a one-tailed F -test, rejecting H0 if the value F of our F -statistic is too
big. How big is too big depends, of course, on our chosen significance level α,
and hence on the tabulated value Ftab := Fα(r − 1, n − r), the upper α-point
of the relevant F -distribution. We summarise:

Theorem 2.8

When the null hypothesis H0 (that all the treatment means μ1, . . . , μr are
equal) is true, the F -statistic F := MST/MSE = (SST/(r−1))/(SSE/(n−r))
has the F -distribution F (r − 1, n − r). When the null hypothesis is false, F

increases. So large values of F are evidence against H0, and we test H0 using
a one-tailed test, rejecting at significance level α if F is too big, that is, with
critical region

F > Ftab = Fα(r − 1, n− r).

Model Equations for One-Way ANOVA.

Xij = μi + εij (i = 1, . . . , r, j = 1, . . . , r), εij iid N(0, σ2).

Here μi is the main effect for the ith treatment, the null hypothesis is H0:
μ1 = . . . = μr = μ, and the unknown variance σ2 is a nuisance parameter. The
point of forming the ratio in the F -statistic is to cancel this nuisance parameter
σ2, just as in forming the ratio in the Student t-statistic in one’s first course
in Statistics. We will return to nuisance parameters in §5.1.1 below.
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Calculations.
In any calculation involving variances, there is cancellation to be made,

which is worthwhile and important numerically. This stems from the definition
and ‘computing formula’ for the variance,

σ2 := E
[
(X − EX)2

]
= E

[
X2

]
− (EX)2

and its sample counterpart

S2 := (X − X)2 = X2 − X
2
.

Writing T , Ti for the grand total and group totals, defined by

T :=
∑

i

∑

j
Xij , Ti :=

∑

j
Xij ,

so X•• = T/n, nX2
•• = T 2/n:

SS =
∑

i

∑

j
X2

ij − T 2/n,

SST =
∑

i
T 2

i /ni − T 2/n,

SSE = SS − SST =
∑

i

∑

j
X2

ij −
∑

i
T 2

i /ni.

These formulae help to reduce rounding errors and are easiest to use if carrying
out an Analysis of Variance by hand.

It is customary, and convenient, to display the output of an Analysis of
Variance by an ANOVA table, as shown in Table 2.1. (The term ‘Error’ can be
used in place of ‘Residual’ in the ‘Source’ column.)

Source df SS Mean Square F

Treatments r − 1 SST MST = SST/(r − 1) MST/MSE

Residual n − r SSE MSE = SSE/(n − r)
Total n − 1 SS

Table 2.1 One-way ANOVA table.

Example 2.9

We give an example which shows how to calculate the Analysis of Variance
tables by hand. The data in Table 2.2 come from an agricultural experiment. We
wish to test for different mean yields for the different fertilisers. We note that
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Fertiliser Yield
A 14.5, 12.0, 9.0, 6.5
B 13.5, 10.0, 9.0, 8.5
C 11.5, 11.0, 14.0, 10.0
D 13.0, 13.0, 13.5, 7.5
E 15.0, 12.0, 8.0, 7.0
F 12.5, 13.5, 14.0, 8.0

Table 2.2 Data for Example 2.9

we have six treatments so 6−1 = 5 degrees of freedom for treatments. The total
number of degrees of freedom is the number of observations minus one, hence
23. This leaves 18 degrees of freedom for the within-treatments sum of squares.
The total sum of squares can be calculated routinely as

∑
(yij − y2) =

∑
y2

ij −
ny2, which is often most efficiently calculated as

∑
y2

ij − (1/n) (
∑

yij)
2. This

calculation gives SS = 3119.25 − (1/24)(266.5)2 = 159.990. The easiest next
step is to calculate SST , which means we can then obtain SSE by subtraction
as above. The formula for SST is relatively simple and reads

∑
iTi/ni −T 2/n,

where Ti denotes the sum of the observations corresponding to the ith treatment
and T =

∑
ijyij . Here this gives SST = (1/4)(422 + 412 + 46.52 + 472 + 422 +

482)−1/24(266.5)2 = 11.802. Working through, the full ANOVA table is shown
in Table 2.3.

Source df Sum of Squares Mean Square F

Between fertilisers 5 11.802 2.360 0.287
Residual 18 148.188 8.233
Total 23 159.990

Table 2.3 One-way ANOVA table for Example 2.9

This gives a non-significant p-value compared with F3,16(0.95) = 3.239.
R calculates the p-value to be 0.914. Alternatively, we may place bounds on
the p-value by looking at statistical tables. In conclusion, we have no evidence
for differences between the various types of fertiliser.

In the above example, the calculations were made more simple by having
equal numbers of observations for each treatment. However, the same general
procedure works when this no longer continues to be the case. For detailed
worked examples with unequal sample sizes see Snedecor and Cochran (1989)
§12.10.
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S-Plus/R�.
We briefly describe implementation of one-way ANOVA in S-Plus/R�. For

background and details, see e.g. Crawley (2002), Ch. 15. Suppose we are study-
ing the dependence of yield on treatment, as above. [Note that this requires that
we set treatment to be a factor variable, taking discrete rather than continuous
values, which can be achieved by setting treatment <- factor(treatment).]
Then, using aov as short for ‘Analysis of Variance’, <- for the assignment op-
erator in S-Plus (read as ‘goes to’ or ‘becomes’) and ∼ as short for ‘depends
on’ or ‘is regressed on’, we use

model <- aov (yield ~ treatment)

to do the analysis, and ask for the summary table by

summary(model)

A complementary anova command is summarised briefly in Chapter 5.2.1.

2.7 Two-Way ANOVA; No Replications

In the agricultural experiment considered above, problems may arise if the
growing area is not homogeneous. The plots on which the different treatments
are applied may differ in fertility – for example, if a field slopes, nutrients tend
to leach out of the soil and wash downhill, so lower-lying land may give higher
yields than higher-lying land. Similarly, differences may arise from differences
in drainage, soil conditions, exposure to sunlight or wind, crops grown in the
past, etc. If such differences are not taken into account, we will be unable to
distinguish between differences in yield resulting from differences in treatment,
our object of study, and those resulting from differences in growing conditions
– plots, for short – which are not our primary concern. In such a case, one
says that treatments are confounded with plots – we would have no way of
separating the effect of one from that of the other.

The only way out of such difficulties is to subdivide the growing area into
plots, each of which can be treated as a homogeneous growing area, and then
subdivide each plot and apply different treatments to the different sub-plots or
blocks. In this way we will be ‘comparing like with like’, and avoid the pitfalls
of confounding.

When allocating treatments to blocks, we may wish to randomise, to avoid
the possibility of inadvertently introducing a treatment-block linkage. Relevant
here is the subject of design of experiments; see §9.3.



50 2. The Analysis of Variance (ANOVA)

In the sequel, we assume for simplicity that the block sizes are the same
and the number of treatments is the same for each block. The model equations
will now be of the form

Xij = μ + αi + βj + εij (i = 1, . . . , r, j = 1, . . . , n).

Here μ is the grand mean (or overall mean); αi is the ith treatment effect (we
take

∑
iαi = 0, otherwise this sum can – and so should – be absorbed into μ;

βj is the jth block effect (similarly, we take
∑

jβj = 0); the errors εij are iid
N(0, σ2), as before.

Recall the terms Xi• from the one-way case; their counterparts here are
similarly denoted X•j . Start with the algebraic identity

(Xij − X••) = (Xij − Xi• − X•j + X••) + (Xi• − X••) + (X•j − X••).

Square and add. One can check that the cross terms cancel, leaving only the
squared terms. For example, (Xij−Xi•−X•j +X••) averages over i to −(X•j−
X••), and over j to −(X•j − X••), while each of the other terms on the right
involves only one of i and j, and so is unchanged when averaged over the other.
One is left with

∑r

i=1

∑n

j=1
(Xij − X••)2 =

∑r

i=1

∑n

j=1
(Xij − Xi• − X•j + X••)2

+n
∑r

i=1
(Xi• − X••)2

+r
∑n

j=1
(X•j − X••)2.

We write this as
SS = SSE + SST + SSB,

giving the total sum of squares SS as the sum of the sum of squares for error
(SSE), the sum of squares for treatments (SST ) (as before) and a new term,
the sum of squares for blocks, (SSB). The degrees of freedom are, respectively,
nr − 1 for SS (the total sample size is nr, and we lose one df in estimating σ),
r − 1 for treatments (as before), n − 1 for blocks (by analogy with treatments
– or equivalently, there are n block parameters βj , but they are subject to one
constraint,

∑
jβj = 0), and (n− 1)(r− 1) for error (to give the correct total in

the df column in the table below). Independence of the three terms on the right
follows by arguments similar to those in the one-way case. We can accordingly
construct a two-way ANOVA table, as in Table 2.4.

Here we have two F -statistics, FT := MST/MSE for treatment effects
and FB := MSB/MSE for block effects. Accordingly, we can test two null
hypotheses, one, H0(T ), for presence of a treatment effect and one, H0(B), for
presence of a block effect.
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Source df SS Mean Square F

Treatments r − 1 SST MST = SST
r−1 MST/MSE

Blocks n − 1 SSB MSB = SSB
n−1 MSB/MSE

Residual (r − 1)(n − 1) SSE MSE = SSE
(r−1)(n−1)

Total rn − 1 SS

Table 2.4 Two-way ANOVA table

Note 2.10

In educational psychology (or other behavioural sciences), ‘treatments’ might
be different questions on a test, ‘blocks’ might be individuals. We take it for
granted that individuals differ. So we need not calculate MSB nor test H0(B)
(though packages such as S-Plus will do so automatically). Then H0(T ) as
above tests for differences between mean scores on questions in a test. (Where
the questions carry equal credit, such differences are undesirable – but may
well be present in practice!)

Implementation. In S-Plus, the commands above extend to

model <- aov(yield ~ treatment + block)

summary(model)

Example 2.11

We illustrate the two-way Analysis of Variance with an example. We return
to the agricultural example in Example 2.9, but suppose that the data can be
linked to growing areas as shown in Table 2.5. We wish to test the hypoth-
esis that there are no differences between the various types of fertiliser. The

Fertiliser Area 1 Area 2 Area 3 Area 4
A 14.5 12.0 9.0 6.5
B 13.5 10.0 9.0 8.5
C 11.5 11.0 14.0 10.0
D 13.0 13.0 13.5 7.5
E 15.0 12.0 8.0 7.0
F 12.5 13.5 14.0 8.0

Table 2.5 Data for Example 2.11
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sum-of-squares decomposition for two-way ANOVA follows in an analogous
way to the one-way case. There are relatively simple formulae for SS, SST ,
and SSB, meaning that SSE can easily be calculated by subtraction. In detail,
these formulae are

SS =
∑

ij
X2

ij −
1
nr

(∑
Xij

)2

,

SST =
(
X2

1• + . . . + X2
r•

)
/n − 1

nr

(∑
Xij

)2

,

SSB =
(
X2

•1 + . . . + X2
•n

)
/r − 1

nr

(∑
Xij

)2

,

with SSE = SS − SST − SSB. Returning to our example, we see that

SS = 3119.25− (1/24)(266.5)2 = 159.990,

SST = (422 + 412 + 46.52 + 472 + 422 + 482)/4 − (1/24)(266.5)2 = 11.802,

SSB = (802 + 71.52 + 67.52 + 47.52)/6 − (1/24)(266.5)2 = 94.865.

By subtraction SSE = 159.9896 − 11.80208 − 94.86458 = 53.323. These cal-
culations lead us to the ANOVA table in Table 2.6. Once again we have no
evidence for differences amongst the 6 types of fertiliser. The variation that
does occur is mostly due to the effects of different growing areas.

Source df S.S. MS F p

Fertilisers 5 11.802 2.360 0.664 0.656
Area 3 94.865 31.622 8.895 0.001

Residual 15 53.323 3.555
Total 23 159.990

Table 2.6 Two-way ANOVA table for Example 2.11

2.8 Two-Way ANOVA: Replications and

Interaction

In the above, we have one reading Xij for each cell, or combination of the
ith treatment and the jth block. But we may have more. Suppose we have
m replications – independent readings – per cell. We now need three suffices
rather than two. The model equations will now be of the form

Xijk = μ+αi +βj +γij + εijk (i = 1, . . . , r, j = 1, . . . , n, k = 1, . . . , m).
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Here the new parameters γij measure possible interactions between treatment
and block effects. This allows one to study situations in which effects are not
additive. Although we use the word interaction here as a technical term in
Statistics, this is fully consistent with its use in ordinary English. We are all
familiar with situations where, say, a medical treatment (e.g. a drug) may in-
teract with some aspect of our diet (e.g. alcohol). Similarly, two drugs may
interact (which is why doctors must be careful in checking what medication
a patient is currently taking before issuing a new prescription). Again, differ-
ent alcoholic drinks may interact (folklore wisely counsels against mixing one’s
drinks), etc.

Arguments similar to those above lead to the following sum-of-squares de-
composition:
∑r

i=1

∑n

j=1
(Xijk − X•••)2 =

∑

i

∑

j

∑

k
(Xijk − Xij•)2

+nm
∑

i
(Xi•• − X•••)2

+rm
∑

j
(X•j• − X•••)2

+m
∑

i

∑

j
(Xij• − Xi•• − X•j• + X•••)2.

We write this as
SS = SSE + SST + SSB + SSI,

where the new term is the sum of squares for interactions. The degrees of free-
dom are r−1 for treatments as before, n−1 for blocks as before, (r−1)(n−1)
for interactions (the product of the effective number of parameters for treat-
ments and for blocks), rnm−1 in total (there are rnm readings), and rn(m−1)
for error (so that the df totals on the right and left above agree).
Implementation. The S-Plus/R� commands now become

model <- aov(yield ~ treatment * block)

summary(model)

This notation is algebraically motivated, and easy to remember. With ad-
ditive effects, we used a +. We now use a ∗, suggestive of the possibility of
‘product’ terms representing the interactions. We will encounter many more
such situations in the next chapter, when we deal with multiple regression.

The summary table now takes the form of Table 2.7. We now have three
F -statistics, FT and FB as before, and now FI also, which we can use to test
for the presence of interactions.



54 2. The Analysis of Variance (ANOVA)

Source df SS Mean Square F

Treatments r − 1 SST MST = SST
r−1 MST/MSE

Blocks n − 1 SSB MSB = SSB
n−1 MSB/MSE

Interaction (r − 1)(n − 1) SSI MSI = SSI
(r−1)(n−1) MSI/MSE

Residual rn(m − 1) SSE MSE = SSE
rn(m−1)

Total rmn − 1 SS

Table 2.7 Two-way ANOVA table with interactions

Example 2.12

The following example illustrates the procedure for two-way ANOVA with
interactions. The data in Table 2.8 link the growth of hamsters of different
coat colours when fed different diets.

Light coat Dark coat
Diet A 6.6, 7.2 8.3, 8.7
Diet B 6.9, 8.3 8.1, 8.5
Diet C 7.9, 9.2 9.1, 9.0

Table 2.8 Data for Example 2.12

The familiar formula for the total sum of squares gives SS = 805.2 −
(97.82/12) = 8.13. In a similar manner to Example 2.11, the main effects sum-
of-squares calculations give

SST =
∑ y2

i••
nm

−

(∑
ijkyijk

)2

rmn
,

SSB =
y2
•j•
rm

−

(∑
ijkyijk

)2

rmn
,

and in this case give SST = (1/4)(30.82 + 31.82 + 35.22) − (97.82/12) = 2.66
and SSB = (1/6)(46.12 + 51.72) − (97.82/12) = 2.613. The interaction sum of
squares can be calculated as a sum of squares corresponding to every cell in
the table once the main effects of SST and SSB have been accounted for. The
calculation is

SSI =
1
m

∑
y2

ij• − SST − SSB −

(∑
ijkyijk

)2

rmn
,
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which in this example gives SSI = (1/2)(13.82 + 172 + 15.22 + 16.62 + 17.12 +
18.12) − 2.66 − 2.613 − (97.82/12) = 0.687. As before, SSE can be calculated
by subtraction, and the ANOVA table is summarised in Table 2.9. The results

Source df SS MS F p

Diet 2 2.66 1.33 3.678 0.091
Coat 1 2.613 2.613 7.226 0.036

Diet:Coat 2 0.687 0.343 0.949 0.438
Residual 5 2.17 0.362

Total 11 8.13

Table 2.9 Two-way ANOVA with interactions for Example 2.12.

suggest that once we take into account the different types of coat, the effect of
the different diets is seen to become only borderline significant. The diet:coat
interaction term is seen to be non-significant and we might consider in a sub-
sequent analysis the effects of deleting this term from the model.

Note 2.13 (Random effects)

The model equation for two-way ANOVA with interactions is

yijk = μ + αi + βj + γij + εijk,

with
∑

iαi =
∑

jβj =
∑

ijγij = 0. Here the αi, βj , γij are constants, and the
randomness is in the errors εijk. Suppose, however, that the βi were themselves
random (in the examination set-up above, the suffix i might refer to the ith
question, and suffix j to the jth candidate; the candidates might be chosen at
random from a larger population). We would then use notation such as

yijk = μ + αi + bj + cij + εijk.

Here we have both a fixed effect (for questions, i) and a random effect (for
candidates, j). With both fixed and random effects, we speak of a mixed model;
see §9.1.

With only random effects, we have a random effects model, and use notation
such as

yijk = μ + ai + bj + cij + εijk.

We restrict for simplicity here to the model with no interaction terms:

yijk = μ + ai + bj + εijk.
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Assuming independence of the random variables on the right, the variances add
(see e.g. Haigh (2002), Cor. 5.6):

σ2
y = σ2

a + σ2
b + σ2

ε ,

in an obvious notation. The terms on the right are called variance components;
see e.g. Searle, Casella and McCulloch (1992) for a detailed treatment.

Variance components can be traced back to work of Airy in 1861 on as-
tronomical observations (recall that astronomy also led to the development of
Least Squares by Legendre and Gauss).

EXERCISES

2.1. (i) Show that if X, Y are positive random variables with joint density
f(x, y) their quotient Z := X/Y has density

h(z) =
∫ ∞

0

yf(yz, y) dy (z > 0).

So if X, Y are independent with densities f, g,

h(z) =
∫ ∞

0

yf(yz)g(y) dy (z > 0).

(ii) If X has density f and c > 0, show that X/c has density

fX/c(x) = cf(cx).

(iii) Deduce that the Fisher F-distribution F (m, n) has density

h(z) = m
1
2 mn

1
2 n Γ (1

2m + 1
2n)

Γ (1
2m)Γ (1

2n)
· z

1
2 m−1

(n + mz)
1
2 (m+n)

(z > 0).

2.2. Using tables or S-Plus/R� produce bounds or calculate the exact
probabilities for the following statements. [Note. In S-Plus/R� the
command pf may prove useful.]
(i) P(X < 1.4) where X∼F5,17,
(ii) P(X > 1) where X∼F1,16,
(iii) P(X < 4) where X∼F1,3,
(iv) P(X > 3.4) where X∼F19,4,
(v) P(ln X > −1.4) where X∼F10,4.
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Fat 1 Fat 2 Fat 3 Fat 4
164 178 175 155
172 191 193 166
168 197 178 149
177 182 171 164
156 185 163 170
195 177 176 168

Table 2.10 Data for Exercise 2.3.

2.3. Doughnut data. Doughnuts absorb fat during cooking. The following
experiment was conceived to test whether the amount of fat absorbed
depends on the type of fat used. Table 2.10 gives the amount of fat
absorbed per batch of doughnuts. Produce the one-way Analysis of
Variance table for these data. What is your conclusion?

2.4. The data in Table 2.11 come from an experiment where growth is
measured and compared to the variable photoperiod which indicates
the length of daily exposure to light. Produce the one-way ANOVA
table for these data and determine whether or not growth is affected
by the length of daily light exposure.

Very short Short Long Very long
2 3 3 4
3 4 5 6
1 2 1 2
1 1 2 2
2 2 2 2
1 1 2 3

Table 2.11 Data for Exercise 2.4

2.5. Unpaired t-test with equal variances. Under the null hypothesis the
statistic t defined as

t =
√

n1n2

n1 + n2

(
X1 − X2 − (μ1 − μ2)

)

s

should follow a t distribution with n1 + n2 − 2 degrees of freedom,
where n1 and n2 denote the number of observations from samples 1
and 2 and s is the pooled estimate given by

s2 =
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
,
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where

s2
1 =

1
n1 − 1

(
∑

x2
1 − (n1 − 1)x2

1),

s2
2 =

1
n2 − 1

(
∑

x2
2 − (n2 − 1)x2

2).

(i) Give the relevant statistic for a test of the hypothesis μ1 = μ2

and n1 = n2 = n.
(ii) Show that if n1 = n2 = n then one-way ANOVA recovers the
same results as the unpaired t-test. [Hint. Show that the F -statistic
satisfies F1,2(n−1) = t22(n−1)].

2.6. Let Y1, Y2 be iid N(0, 1). Give values of a and b such that

a(Y1 − Y2)2 + b(Y1 + Y2)2∼χ2
2.

2.7. Let Y1, Y2, Y3 be iid N(0, 1). Show that

1
3

[
(Y1 − Y2)

2 + (Y2 − Y3)
2 + (Y3 − Y1)

2
]
∼χ2

2.

Generalise the above result for a sample Y1, Y2, . . ., Yn of size n.

2.8. The data in Table 2.12 come from an experiment testing the num-
ber of failures out of 100 planted soyabean seeds, comparing four
different seed treatments, with no treatment (‘check’). Produce the
two-way ANOVA table for this data and interpret the results. (We
will return to this example in Chapter 8.)

Treatment Rep 1 Rep 2 Rep 3 Rep 4 Rep 5
Check 8 10 12 13 11
Arasan 2 6 7 11 5
Spergon 4 10 9 8 10

Semesan, Jr 3 5 9 10 6
Fermate 9 7 5 5 3

Table 2.12 Data for Exercise 2.8

2.9. Photoperiod example revisited. When we add in knowledge of plant
genotype the full data set is as shown in Table 2.13. Produce the
two-way ANOVA table and revise any conclusions from Exercise 2.4
in the light of these new data as appropriate.
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Genotype Very short Short Long Very Long
A 2 3 3 4
B 3 4 5 6
C 1 2 1 2
D 1 1 2 2
E 2 2 2 2
F 1 1 2 3

Table 2.13 Data for Exercise 2.9

2.10. Two-way ANOVA with interactions. Three varieties of potato are
planted on three plots at each of four locations. The yields in bushels
are given in Table 2.14. Produce the ANOVA table for these data.
Does the interaction term appear necessary? Describe your conclu-
sions.

Variety Location 1 Location 2 Location 3 Location 4
A 15, 19, 22 17, 10, 13 9, 12, 6 14, 8, 11
B 20, 24, 18 24, 18, 22 12, 15, 10 21, 16, 14
C 22, 17, 14 26, 19, 21 10, 5, 8 19, 15, 12

Table 2.14 Data for Exercise 2.10

2.11. Two-way ANOVA with interactions. The data in Table 2.15 give
the gains in weight of male rats from diets with different sources
and different levels of protein. Produce the two-way ANOVA table
with interactions for these data. Test for the presence of interactions
between source and level of protein and state any conclusions that
you reach.

Source High Protein Low Protein
Beef 73, 102, 118, 104, 81, 90, 76, 90, 64, 86,

107, 100, 87, 117, 111 51, 72, 90, 95, 78
Cereal 98, 74, 56, 111, 95, 107, 95, 97, 80, 98,

88, 82, 77, 86, 92 74, 74, 67, 89, 58
Pork 94, 79, 96, 98, 102, 49, 82, 73, 86, 81,

102, 108, 91, 120, 105 97, 106, 70, 61, 82

Table 2.15 Data for Exercise 2.11
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Multiple Regression

3.1 The Normal Equations

We saw in Chapter 1 how the model

yi = a + bxi + εi, εi iid N(0, σ2)

for simple linear regression occurs. We saw also that we may need to consider
two or more regressors. We dealt with two regressors u and v, and could deal
with three regressors u, v and w similarly. But in general we will need to be
able to handle any number of regressors, and rather than rely on the finite
resources of the alphabet it is better to switch to suffix notation, and use the
language of vectors and matrices. For a random vector X, we will write EX for
its mean vector (thus the mean of the ith coordinate Xi is E(Xi) = (EX)i),
and var(X) for its covariance matrix (whose (i, j) entry is cov(Xi, Xj)). We
will use p regressors, called x1, . . . , xp, each with a corresponding parameter
β1, . . . , βp (‘p for parameter’). In the equation above, regard a as short for a.1,
with 1 as a regressor corresponding to a constant term (the intercept term in
the context of linear regression). Then for one reading (‘a sample of size 1’) we
have the model

y = β1x1 + . . . + βpxp + ε, εi ∼ N(0, σ2).

In the general case of a sample of size n, we need two suffices, giving the model
equations

yi = β1xi1 + . . . + βpxip + εi, εi iid N(0, σ2) (i = 1, . . . , n).

N.H. Bingham and J.M. Fry, Regression: Linear Models in Statistics, 61
Springer Undergraduate Mathematics Series, DOI 10.1007/978-1-84882-969-5 3,
c© Springer-Verlag London Limited 2010
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Writing the typical term on the right as xijβj , we recognise the form of a matrix
product. Form y1, . . . , yn into a column vector y, ε1, . . . , εn into a column vector
ε, β1, . . . , βp into a column vector β, and xij into a matrix X (thus y and ε are
n × 1, β is p × 1 and X is n × p). Then our system of equations becomes one
matrix equation, the model equation

y = Xβ + ε. (ME)

This matrix equation, and its consequences, are the object of study in this
chapter. Recall that, as in Chapter 1, n is the sample size – the larger the
better – while p, the number of parameters, is small – as small as will suffice.
We will have more to say on choice of p later. Typically, however, p will be at
most five or six, while n could be some tens or hundreds. Thus we must expect
n to be much larger than p, which we write as

n >> p.

In particular, the n×p matrix X has no hope of being invertible, as it is not
even square (a common student howler).

Note 3.1

We pause to introduce the objects in the model equation (ME) by name.
On the left is y, the data, or response vector. The last term ε is the error or
error vector; β is the parameter or parameter vector. Matrix X is called the
design matrix. Although its (i, j) entry arose above as the ith value of the jth
regressor, for most purposes from now on xij is just a constant. Emphasis shifts
from these constants to the parameters, βj .

Note 3.2

To underline this shift of emphasis, it is often useful to change notation and
write A for X , when the model equation becomes

y = Aβ + ε. (ME)

Lest this be thought a trivial matter, we mention that Design of Experiments
(initiated by Fisher) is a subject in its own right, on which numerous books
have been written, and to which we return in §9.3.

We will feel free to use either notation as seems most convenient at the
time. While X is the natural choice for straight regression problems, as in this
chapter, it is less suitable in the general Linear Model, which includes related
contexts such as Analysis of Variance (Chapter 2) and Analysis of Covariance
(Chapter 5). Accordingly, we shall usually prefer A to X for use in developing
theory.
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We make a further notational change. As we shall be dealing from now on
with vectors rather than scalars, there is no need to remind the reader of this
by using boldface type. We may thus lighten the notation by using y for y,
etc.; thus we now have

y = Aβ + ε, (ME)

for use in this chapter (in Chapter 4 below, where we again use x as a scalar
variable, we use x for a vector variable).

From the model equation

yi =
∑p

j=1
aijβj + εi, εi iid N(0, σ2),

the likelihood is

L =
1

σn(2π)
1
2 n

∏n

i=1
exp

{

−1
2

(
yi −

∑p

j=1
aijβj

)2

/σ2

}

=
1

σn(2π)
1
2 n

exp
{

−1
2

∑n

i=1

(
yi −

∑p

j=1
aijβj

)2

/σ2

}

,

and the log-likelihood is

� := log L = const − n log σ − 1
2

[∑n

i=1

(
yi −

∑p

j=1
aijβj

)2
]

/σ2.

As before, we use Fisher’s Method of Maximum Likelihood, and maximise with
respect to βr: ∂�/∂βr = 0 gives

∑n

i=1
air

(
yi −

∑p

j=1
aijβj

)
= 0 (r = 1, . . . , p),

or
∑p

j=1

(∑n

i=1
airaij

)
βj =

∑n

i=1
airyi.

Write C = (cij) for the p × p matrix

C := AT A,

(called the information matrix – see Definition 3.10 below), which we note is
symmetric: CT = C. Then

cij =
∑n

k=1
(AT )ikAkj =

∑n

k=1
akiakj .

So this says ∑p

j=1
crjβj =

∑n

i=1
airyi =

∑n

i=1
(AT )riyi.
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In matrix notation, this is

(Cβ)r = (AT y)r (r = 1, . . . , p),

or combining,
Cβ = AT y, C := AT A. (NE)

These are the normal equations, the analogues for the general case of the normal
equations obtained in Chapter 1 for the cases of one and two regressors.

3.2 Solution of the Normal Equations

Our next task is to solve the normal equations for β. Before doing so, we need
to check that there exists a unique solution, the condition for which is, from
Linear Algebra, that the information matrix C := AT A should be non-singular
(see e.g. Blyth and Robertson (2002a), Ch. 4). This imposes an important
condition on the design matrix A. Recall that the rank of a matrix is the
maximal number of independent rows or columns. If this is as big as it could
be given the size of the matrix, the matrix is said to have full rank, otherwise it
has deficient rank. Since A is n×p with n >> p, A has full rank if its rank is p.

Recall from Linear Algebra that a square matrix C is non-negative definite if

xT Cx ≥ 0

for all vectors x, while C is positive definite if

xT Cx > 0 ∀x �= 0

(see e.g. Blyth and Robertson (2002b), Ch. 8). A positive definite matrix is
non-singular, so invertible; a non-negative definite matrix need not be.

Lemma 3.3

If A (n × p, n > p) has full rank p, C := AT A is positive definite.

Proof

As A has full rank, there is no vector x with Ax = 0 other than the zero vector
(such an equation would give a non-trivial linear dependence relation between
the columns of A). So

(Ax)T Ax = xT AT Ax = xT Cx = 0
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only for x = 0, and is > 0 otherwise. This says that C is positive definite, as
required.

Note 3.4

The same proof shows that C := AT A is always non-negative definite, regard-
less of the rank of A.

Theorem 3.5

For A full rank, the normal equations have the unique solution

β̂ = C−1AT y = (AT A)−1AT y. (β̂)

Proof

In the full-rank case, C is positive definite by Lemma 3.3, so invertible, so we
may solve the normal equations to obtain the solution above.

From now on, we restrict attention to the full-rank case: the design matrix
A, which is n×p, has full rank p.

Note 3.6

The distinction between the full- and deficient-rank cases is the same as that
between the general and singular cases that we encountered in Chapter 1 in
connection with the bivariate normal distribution. We will encounter it again
later in Chapter 4, in connection with the multivariate normal distribution. In
fact, this distinction bedevils the whole subject. Linear dependence causes rank-
deficiency, in which case we should identify the linear dependence relation, use it
to express some regressors (or columns of the design matrix) in terms of others,
eliminate the redundant regressors or columns, and begin again in a lower
dimension, where the problem will have full rank. What is worse is that near-
linear dependence – which when regressors are at all numerous is not uncommon
– means that one is close to rank-deficiency, and this makes things numerically
unstable. Remember that in practice, we work numerically, and when one is
within rounding error of rank-deficiency, one is close to disaster. We shall return
to this vexed matter later (§4.4), in connection with multicollinearity. We note
in passing that Numerical Linear Algebra is a subject in its own right; for a
monograph treatment, see e.g. Golub and Van Loan (1996).
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Just as in Chapter 1, the functional form of the normal likelihood means
that maximising the likelihood minimises the sum of squares

SS := (y − Aβ)T (y − Aβ) =
∑n

i=1

(
yi −

∑p

j=1
aijβj

)2

.

Accordingly, we have as before the following theorem.

Theorem 3.7

The solutions (β̂) to the normal equations (NE) are both the maximum-
likelihood estimators and the least-squares estimators of the parameters β.

There remains the task of estimating the remaining parameter σ. At the
maximum, β = β̂. So taking ∂SS/∂σ = 0 in the log-likelihood

� := log L = const − n log σ − 1
2

[∑n

i=1

(
yi −

∑p

j=1
aijβj

)2
]

/σ2

gives, at the maximum,

−n

σ
+

1
σ3

∑n

i=1

(
yi −

∑p

j=1
aijβj

)2

= 0.

At the maximum, β = β̂; rearranging, we have at the maximum that

σ2 =
1
n

∑n

i=1

(
yi −

∑p

j=1
aij β̂j

)2

.

This sum of squares is, by construction, the minimum value of the total sum
of squares SS as the parameter β varies, the minimum being attained at the
least-squares estimate β̂. This minimised sum of squares is called the sum of
squares for error, SSE:

SSE =
∑n

i=1

(
yi −

∑p

j=1
aij β̂j

)2

=
(
y − Aβ̂

)T (
y − Aβ̂

)
,

so-called because, as we shall see in Corollary 3.23 below, the unbiased estima-
tor of the error variance σ2 is σ̂2 = SSE/(n − p).

We call
ŷ := Aβ̂

the fitted values, and
e := y − ŷ,

the difference between the actual values (data) and fitted values, the residual
vector. If e = (e1, . . . , en), the ei are the residuals, and the sum of squares for
error

SSE =
∑n

i=1
(yi − ŷi)2 =

∑n

i=1
e2

i

is the sum of squared residuals.
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Note 3.8

We pause to discuss unbiasedness and degrees of freedom (df). In a first course
in Statistics, one finds the maximum-likelihood estimators (MLEs) μ̂, σ̂2 of the
parameters μ, σ2 in a normal distribution N(μ, σ2). One finds

μ̂ = x, σ̂2 = s2
x :=

1
n

∑n

i=1
(xi − x)2

(and the distributions are given by x ∼ N(μ, σ2/n) and nσ̂2/σ2 ∼ χ2(n − 1)).
But this is a biased estimator of σ2; to get an unbiased estimator, one has to
replace n in the denominator above by n−1 (in distributional terms: the mean
of a chi-square is its df). This is why many authors use n − 1 in place of n in
the denominator when they define the sample variance (and we warned, when
we used n in Chapter 1, that this was not universal!), giving what we will call
the unbiased sample variance,

s2
u :=

1
(n − 1)

∑n

i=1
(xi − x)2.

The problem is that to estimate σ2, one has first to estimate μ by x. Every time
one has to estimate a parameter from the data, one loses a degree of freedom.
In this one-dimensional problem, the df accordingly decreases from n to n− 1.

Returning to the general case: here we have to estimate p parameters,
β1, . . . , βp. Accordingly, we lose p degrees of freedom, and to get an unbiased
estimator we have to divide, not by n as above but by n−p, giving the estimator

σ̂2 =
1

(n − p)
SSE.

Since n is much larger than p, the difference between this (unbiased) estimator
and the previous (maximum-likelihood) version is not large, but it is worth-
while, and so we shall work with the unbiased version unless otherwise stated.
We find its distribution in §3.4 below (and check it is unbiased – Corollary 3.23).

Note 3.9 (Degrees of Freedom)

Recall that n is our sample size, that p is our number of parameters, and that
n is much greater than p. The need to estimate p parameters, which reduces
the degrees of freedom from n to n− p, thus effectively reduces the sample size
by this amount. We can think of the degrees of freedom as a measure of the
amount of information available to us.

This interpretation is in the minds of statisticians when they prefer one
procedure to another because it ‘makes more degrees of freedom available’ for



68 3. Multiple Regression

the task in hand. We should always keep the degrees of freedom of all relevant
terms (typically, sums of squares, or quadratic forms in normal variates) in
mind, and think of keeping this large as being desirable.

We rewrite our conclusions so far in matrix notation. The total sum of
squares is

SS :=
∑n

i=1

(
yi −

∑p

j=1
aijβj

)2

= (y − Aβ)T (y − Aβ) ;

its minimum value with respect to variation in β is the sum of squares for error

SSE =
∑n

i=1

(
yi −

∑p

j=1
aij β̂j

)2

=
(
y − Aβ̂

)T (
y − Aβ̂

)
,

where β̂ is the solution to the normal equations (NE). Note that SSE is a
statistic – we can calculate it from the data y and β̂ = C−1AT y, unlike SS

which contains unknown parameters β.
One feature is amply clear already. To carry through a regression analysis in

practice, we must perform considerable matrix algebra – or, with actual data,
numerical matrix algebra – involving in particular the inversion of the p × p

matrix C := AT A. With matrices of any size, the calculations may well be
laborious to carry out by hand. In particular, matrix inversion to find C−1 will
be unpleasant for matrices larger than 2×2, even though C – being symmetric
and positive definite – has good properties. For matrices of any size, one needs
computer assistance. The package MATLAB�1 is specially designed with ma-
trix operations in mind. General mathematics packages such as Mathematica�2

or Maple�3 have a matrix inversion facility; so too do a number of statistical
packages – for example, the solve command in S-Plus/R�.
QR Decomposition

The numerical solution of the normal equations ((NE) in §3.1, (β̂) in The-
orem 3.5) is simplified if the design matrix A (which is n × p, and of full rank
p) is given its QR decomposition

A = QR,

where Q is n × p and has orthonormal columns – so

QT Q = I

1 MATLAB�, Simulink� and Symbolic Math ToolboxTM are trademarks of The
MathWorks, Inc., 3 Apple Hill Drive, Natick, MA, 01760-2098, USA, http://www.
mathworks.com

2 Mathematica� is a registered trademark of Wolfram Research, Inc., 100 Trade
Center Drive, Champaign, IL 61820-7237, USA, http://www.wolfram.com

3 MapleTM is a trademark of Waterloo Maple Inc., 615 Kumpf Drive, Waterloo,
Ontario, Canada N2V 1K8, http://www.maplesoft.com

http://www.mathworks.com
http://www.mathworks.com
http://www.wolfram.com
http://www.maplesoft.com
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– and R is p × p, upper triangular, and non-singular (has no zeros on the
diagonal). This is always possible; see below. The normal equations AT Aβ̂ =
AT y then become

RT QT QRβ̂ = RT QT y,

or
RT Rβ̂ = RT QT y,

as QT Q = I, or
Rβ̂ = QT y,

as R, and so also RT , is non-singular. This system of linear equations for
β̂ has an upper triangular matrix R, and so may be solved simply by back-
substitution, starting with the bottom equation and working upwards.

The QR decomposition is just the expression in matrix form of the process
of Gram–Schmidt orthogonalisation, for which see e.g. Blyth and Robertson
(2002b), Th. 1.4. Write A as a row of its columns,

A = (a1, . . . , ap);

the n-vectors ai are linearly independent as A has full rank p. Write q1 :=
a1/‖a1‖, and for j = 2, . . . , p,

qj := wj/‖wj‖, where wj := aj −
∑j−1

k=1
(aT

k qk)qk.

Then the qj are orthonormal (are mutually orthogonal unit vectors), which
span the column-space of A (Gram-Schmidt orthogonalisation is this process
of passing from the aj to the qj). Each qj is a linear combination of a1, . . . , aj ,
and the construction ensures that, conversely, each aj is a linear combination
of q1, . . . , qj . That is, there are scalars rkj with

aj =
∑j

k=1
rkjqk (j = 1, . . . , p).

Put rkj = 0 for k > j. Then assembling the p columns aj into the matrix A as
above, this equation becomes

A = QR,

as required.

Note 3.10

Though useful as a theoretical tool, the Gram–Schmidt orthogonalisation pro-
cess is not numerically stable. For numerical implementation, one needs a stable
variant, the modified Gram-Schmidt process. For details, see Golub and Van
Loan (1996), §5.2. They also give other forms of the QR decomposition (House-
holder, Givens, Hessenberg etc.).
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3.3 Properties of Least-Squares Estimators

We have assumed normal errors in our model equations, (ME) of §3.1. But
(until we need to assume normal errors in §3.5.2), we may work more generally,
and assume only

Ey = Aβ, var(y) = σ2I. (ME∗)

We must then restrict ourselves to the Method of Least Squares, as without
distributional assumptions we have no likelihood function, so cannot use the
Method of Maximum Likelihood.

Linearity. The least-squares estimator

β̂ = C−1AT y

is linear in the data y.

Unbiasedness.

Eβ̂ = C−1AT Ey = C−1AT Aβ = C−1Cβ = β :

β̂ is an unbiased estimator of β.

Covariance matrix.

var(β̂) = var(C−1AT y) = C−1AT (var(y))(C−1AT )T

= C−1AT .σ2I.AC−1 (C = CT )

= σ2.C−1AT .AC−1

= σ2C−1 (C = AT A).

We wish to keep the variances of our estimators of our p parameters βi small,
and these are the diagonal elements of the covariance matrix above; similarly
for the covariances (off-diagonal elements). The smaller the variances, the more
precise our estimates, and the more information we have. This motivates the
next definition.

Definition 3.11

The matrix C := AT A, with A the design matrix, is called the information
matrix.
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Note 3.12

1. The variance σ2 in our errors εi (which we of course wish to keep small) is
usually beyond our control. However, at least at the stage of design and plan-
ning of the experiment, the design matrix A may well be within our control;
hence so will be the information matrix C := AT A, which we wish to maximise
(in some sense), and hence so will be C−1, which we wish to minimise in some
sense. We return to this in §9.3 in connection with Design of Experiments.
2. The term information matrix is due to Fisher. It is also used in the context of
parameter estimation by the method of maximum likelihood. One has the like-
lihood L(θ), with θ a vector parameter, and the log-likelihood �(θ) := log L(θ).
The information matrix is the negative of the Hessian (matrix of second deriva-
tives) of the log-likelihood: I(θ) := (Iij(θ))

p
i,j=1 , when

Iij(θ) := − ∂2

∂θi∂θj
�(θ).

Under suitable regularity conditions, the maximum likelihood estimator θ̂ is
asymptotically normal and unbiased, with variance matrix (nI(θ))−1; see e.g.
Rao (1973), 5a.3, or Cramér (1946), §33.3.

Unbiased linear estimators. Now let β̃ := By be any unbiased linear estimator
of β (B a p × n matrix). Then

Eβ̃ = BEy = BAβ = β

– and so β̃ is an unbiased estimator for β – iff

BA = I.

Note that
var(β̃) = Bvar(y)BT = B.σ2I.BT = σ2BBT .

In the context of linear regression, as here, it makes sense to restrict at-
tention to linear estimators. The two most obviously desirable properties of
such estimators are unbiasedness (to get the mean right), and being minimum
variance (to get maximum precision). An estimator with both these desirable
properties may be termed a best estimator. A linear one is then a best linear
unbiased estimator or BLUE (such acronyms are common in Statistics, and
useful; an alternative usage is minimum variance unbiased linear estimate, or
MVULE, but this is longer and harder to say). It is remarkable that the least-
squares estimator that we have used above is best in this sense, or BLUE.
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Theorem 3.13 (Gauss–Markov Theorem)

Among all unbiased linear estimators β̃ = By of β, the least-squares estimator
β̂ = C−1AT y has the minimum variance in each component. That is β̂ is the
BLUE.

Proof

By above, the covariance matrix of an arbitrary unbiased linear estimate β̃ =
By and of the least-squares estimator β̂ are given by

var(β̃) = σ2BBT and var(β̂) = σ2C−1.

Their difference (which we wish to show is non-negative) is

var(β̃) − var(β̂) = σ2[BBT − C−1].

Now using symmetry of C, C−1, and BA = I (so AT BT = I) from above,

(B − C−1AT )(B − C−1AT )T = (B − C−1AT )(BT − AC−1).

Further,

(B − C−1AT )(BT − AC−1) = BBT − BAC−1 − C−1AT BT + C−1AT AC−1

= BBT − C−1 − C−1 + C−1 (C = AT A)

= BBT − C−1.

Combining,

var(β̃) − var(β̂) = σ2(B − C−1AT )(B − C−1AT )T .

Now for a matrix M = (mij),

(MMT )ii =
∑

k
mik(MT )ki =

∑

k
m2

ik,

the sum of the squares of the elements on the ith row of matrix M . So the ith
diagonal entry above is

var(β̃i) = var(β̂i) + σ2(sum of squares of elements on ith row of B − C−1AT ).

So
var(β̃i) ≥ var(β̂i),

and
var(β̃i) = var(β̂i)

iff B−C−1AT has ith row zero. So some β̃i has greater variance than β̂i unless
B = C−1AT (i.e., unless all rows of B − C−1AT are zero) – that is, unless
β̃ = By = C−1AT y = β̂, the least-squares estimator, as required.
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One may summarise all this as: whether or not errors are assumed normal,
LEAST SQUARES IS BEST.

Note 3.14

The Gauss–Markov theorem is in fact a misnomer. It is due to Gauss, in the
early eighteenth century; it was treated in the book Markov (1912) by A. A.
Markov (1856–1922). A misreading of Markov’s book gave rise to the impression
that he had rediscovered the result, and the name Gauss–Markov theorem has
stuck (partly because it is useful!).

Estimability. A linear combination cT β =
∑p

i=1ciβi, with c = (c1, . . . , cp)T

a known p-vector, is called estimable if it has an unbiased linear estimator,
bT y =

∑n
i=1biyi, with b = (b1, . . . , bn)T a known n-vector. Then

E(bT y) = bT E(y) = bT Aβ = cT β.

This can hold identically in the unknown parameter β iff

cT = bT A,

that is, c is a linear combination (by the n-vector b) of the n rows (p-vectors)
of the design matrix A. The concept is due to R. C. Bose (1901–1987) in 1944.

In the full-rank case considered here, the rows of A span a space of full
dimension p, and so all linear combinations are estimable. But in the defective
rank case with rank k < p, the estimable functions span a space of dimension
k, and non-estimable linear combinations exist.

3.4 Sum-of-Squares Decompositions

We define the sum of squares for regression, SSR, by

SSR := (β̂ − β)T C(β̂ − β).

Since this is a quadratic form with matrix C which is positive definite, we
have SSR ≥ 0, and SSR > 0 unless β̂ = β, that is, unless the least-squares
estimator is exactly right (which will, of course, never happen in practice).

Theorem 3.15 (Sum-of-Squares Decomposition)

SS = SSR + SSE. (SSD)
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Proof

Write
y − Aβ = (y − Aβ̂) + A(β̂ − β).

Now multiply the vector on each side by its transpose (that is, form the sum
of squares of the coordinates of each vector). On the left, we obtain

SS = (y − Aβ)T (y − Aβ),

the total sum of squares. On the right, we obtain three terms. The first squared
term is

SSE = (y − Aβ̂)T (y − Aβ̂),

the sum of squares for error. The second squared term is

(A(β̂ − β))T A(β̂ − β) = (β̂ − β)T AT A(β̂ − β) = (β̂ − β)T C(β̂ − β) = SSR,

the sum of squares for regression. The cross terms on the right are

(y − Aβ̂)T A(β̂ − β)

and its transpose, which are the same as both are scalars. But

AT (y − Aβ̂) = AT y − AT Aβ̂ = AT y − Cb̂ = 0,

by the normal equations (NE) of §3.1-3.2. Transposing,

(y − Aβ̂)T A = 0.

So both cross terms vanish, giving SS = SSR + SSE, as required.

Corollary 3.16

We have that

SSE = min
β

SS,

the minimum being attained at the least-squares estimator β̂ = C−1AT y.

Proof

SSR ≥ 0, and = 0 iff β = β̂.
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We now introduce the geometrical language of projections, to which we
return in e.g. §3.5.3 and §3.6 below. The relevant mathematics comes from
Linear Algebra; see the definition below. As we shall see, doing regression with p

regressors amounts to an orthogonal projection on an appropriate p-dimensional
subspace in n-dimensional space. The sum-of-squares decomposition involved
can be visualised geometrically as an instance of Pythagoras’s Theorem, as in
the familiar setting of plane or solid geometry.

Definition 3.17

Call a linear transformation P : V →V a projection onto V1 along V2 if V is the
direct sum V = V1⊕V2, and if x = (x1, x2)T with Px = x1.

Then (Blyth and Robertson (2002b), Ch.2, Halmos (1979), §41) V1 =
Im P = Ker (I − P ), V2 = Ker P = Im (I − P ).

Recall that a square matrix is idempotent if it is its own square M2 = M .
Then (Halmos (1979), §41), M is idempotent iff it is a projection.

For use throughout the rest of the book, with A the design matrix and
C := AT A the information matrix, we write

P := AC−1AT

(‘P for projection’ – see below). We note that P is symmetric. Note also

Py = AC−1AT y = Aβ̂,

by the normal equations (NE).

Lemma 3.18

P and I − P are idempotent, and so are projections.

Proof

P 2 = AC−1AT .AC−1AT = AC−1AT = P :

P 2 = P.

(I − P )2 = I − 2P + P 2 = I − 2P + P = I − P.
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We now rewrite the two terms SSR and SSE on the right in Theorem 3.15
in the language of projections. Note that the first expression for SSE below
shows again that it is a statistic – a function of the data (not involving unknown
parameters), and so can be calculated from the data.

Theorem 3.19

SSE = yT (I − P )y = (y − Aβ)T (I − P )(y − Aβ),

SSR = (y − Aβ)T P (y − Aβ).

Proof

As SSE :=
(
y − Aβ̂

)T (
y − Aβ̂

)
, and Aβ̂ = Py,

SSE =
(
y − Aβ̂

)T (
y − Aβ̂

)

= (y − Py)T (y − Py) = yT (I − P )(I − P )y = yT (I − P )y,

as I − P is a projection.
For SSR, we have that

SSR :=
(
β̂ − β

)T

C
(
β̂ − β

)
=
(
β̂ − β

)T

AT A
(
β̂ − β

)
.

But
(
β̂ − β

)
= C−1AT y − β = C−1AT y − C−1AT Aβ = C−1AT (y − Aβ),

so

SSR = (y − Aβ)T AC−1.AT A.C−1AT (y − Aβ)

= (y − Aβ)T AC−1AT (y − Aβ) (AT A = C)

= (y − Aβ)T P (y − Aβ),

as required. The second formula for SSE follows from this and (SSD) by
subtraction.

Coefficient of Determination
The coefficient of determination is defined as R2, where R is the (sample)
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correlation coefficient of the data and the fitted values that is of the pairs
(yi, ŷi):

R :=
∑

(yi − y)
(
ŷi − ŷ

)
/

√
∑

(yi − y)2
∑(

ŷi − ŷ
)2

.

Thus −1 ≤ R ≤ 1, 0 ≤ R2 ≤ 1, and R2 is a measure of the goodness of fit of
the fitted values to the data.

Theorem 3.20

R2 = 1 − SSE
∑

(yi − y)2
.

For reasons of continuity, we postpone the proof to §3.4.1 below. Note that
R2 = 1 iff SSE = 0, that is, all the residuals are 0, and the fitted values are the
exact values. As noted above, we will see in §3.6 that regression (estimating p

parameters from n data points) amounts to a projection of the n-dimensional
data space onto an p-dimensional hyperplane. So R2 = 1 iff the data points lie
in an p-dimensional hyperplane (generalising the situation of Chapter 1, where
R2 = 1 iff the data points lie on a line). In our full-rank (non-degenerate) case,
this will not happen (see Chapter 4 for the theory of the relevant multivariate
normal distribution), but the bigger R2 is (or the smaller SSE is), the better
the fit of our regression model to the data.

Note 3.21

R2 provides a useful summary of the proportion of the variation in a data set
explained by a regression. However, as discussed in Chapters 5 and 11 of Draper
and Smith (1998) high values of R2 can be misleading. In particular, we note
that the values R2 will tend to increase as additional terms are added to the
model, irrespective of whether those terms are actually needed. An adjusted
R2 statistic which adds a penalty to complex models can be defined as

R2
a = 1 − (1 − R2)

(
n − 1
n − p

)

,

where n is the number of parameters and n−p is the number of residual degrees
of freedom; see Exercises 3.3, and §5.2 for a treatment of models penalised for
complexity.

We note a result for later use.
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Proposition 3.22 (Trace Formula)

E(xT Ax) = trace(A.var(x)) + ExT .A.Ex.

Proof

xT Ax =
∑

ij
aijxixj ,

so by linearity of E,
E[xT Ax] =

∑

ij
aijE[xixj ].

Now cov(xi, xj) = E(xixj) − (Exi)(Exj), so

E
[
xT Ax

]
=

∑

ij
aij [cov(xixj) + Exi.Exj ]

=
∑

ij
aijcov(xixj) +

∑

ij
aij .Exi.Exj .

The second term on the right is ExT AEx. For the first, note that

trace(AB) =
∑

i
(AB)ii =

∑

ij
aijbji =

∑

ij
aijbij ,

if B is symmetric. But covariance matrices are symmetric, so the first term on
the right is trace(A var(x)), as required.

Corollary 3.23

trace(P ) = p, trace(I − P ) = n − p, E(SSE) = (n − p)σ2.

So σ̂2 := SSE/(n − p) is an unbiased estimator for σ2.

Proof

By Theorem 3.19, SSE is a quadratic form in y − Aβ with matrix I − P =
I − AC−1AT . Now

trace(I − P ) = trace(I − AC−1AT ) = trace(I) − trace(AC−1AT ).

But trace(I) = n (as here I is the n × n identity matrix), and as trace(AB) =
trace(BA) (see Exercise 3.12),

trace(P ) = trace(AC−1AT ) = trace(C−1AT A) = trace(I) = p,
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as here I is the p × p identity matrix. So

trace(I − P ) = trace(I − AC−1AT ) = n − p.

Since Ey = Aβ and var(y) = σ2I, the Trace Formula gives

E(SSE) = (n − p)σ2.

This last formula is analogous to the corresponding ANOVA formula
E(SSE) = (n − r)σ2 of §2.6. In §4.2 we shall bring the subjects of regres-
sion and ANOVA together.

3.4.1 Coefficient of determination

We now give the proof of Theorem 3.20, postponed in the above.

Proof

As at the beginning of Chapter 3 we may take our first regressor as 1, cor-
responding to the intercept term (this is not always present, but since R is
translation-invariant, we may add an intercept term without changing R). The
first of the normal equations then results from differentiating

∑
(yi − β1 − a2iβ2 − . . . − apiβp)2 = 0

with respect to β1, giving
∑

(yi − β1 − a2iβ2 − . . . − apiβp) = 0.

At the minimising values β̂j , this says
∑

(yi − ŷi) = 0.

So
y = ŷ, (a)

and also
∑

(yi − ŷi)(ŷi − y) =
∑

(yi − ŷi)ŷi

= (y − ŷ)T ŷ

= (y − Py)T Py

= yT (I − P )Py

= yT (P − P 2)y,
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so ∑
(yi − ŷi)(ŷi − y) = 0, (b)

as P is a projection. So
∑

(yi − y)2 =
∑

[(yi − ŷi) + (ŷi − y)]2 =
∑

(yi − ŷi)2 +
∑

(ŷi − y)2, (c)

since the cross-term is 0. Also, in the definition of R,
∑

(yi − y)(ŷi − ŷ) =
∑

(yi − y)(ŷi − y) (by (a))

=
∑

[(yi − ŷi) + (ŷi − y)](ŷi − y)

=
∑

(ŷi − y)2 (by (b)).

So

R2 =

[∑
(ŷi − y)2

]2

(
∑

(yi − y)2
∑

(ŷi − y)2)
=
∑

(ŷi − y)2
∑

(yi − y)2
.

By (c),

R2 =
∑

(ŷi − y)2
∑

(yi − ŷi)2 +
∑

(ŷi − y)2

= 1 −
∑

(yi − ŷi)2∑
(yi − ŷi)2 +

∑
(ŷi − y)2

= 1 − SSE
∑

(yi − y)2
,

by (c) again and the definition of SSE.

3.5 Chi-Square Decomposition

Recall (Theorem 2.2) that if x = x1, . . . , xn is N(0, I) – that is, if the xi are
iid N(0, 1) – and we change variables by an orthogonal transformation B to

y := Bx,

then also y ∼ N(0, I). Recall from Linear Algebra (e.g. Blyth and Robert-
son (2002a) Ch. 9) that λ is an eigenvalue of a matrix A with eigenvector
x (�= 0) if

Ax = λx

(x is normalised if xT x = Σix
2
i = 1, as is always possible).
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Recall also (see e.g. Blyth and Robertson (2002b), Corollary to Theorem
8.10) that if A is a real symmetric matrix, then A can be diagonalised by an
orthogonal transformation B, to D, say:

BT AB = D

(see also Theorem 4.12 below, Spectral Decomposition) and that (see e.g. Blyth
and Robertson (2002b), Ch. 9) if λ is an eigenvalue of A,

|D − λI| =
∣
∣BT AB − λI

∣
∣ =

∣
∣BT AB − λBT B

∣
∣ =

∣
∣BT

∣
∣ |A − λI| |B| = 0.

Then a quadratic form in normal variables with matrix A is also a quadratic
form in normal variables with matrix D, as

xT Ax = xT BDBT x = yT Dy, y := BT x.

3.5.1 Idempotence, Trace and Rank

Recall that a (square) matrix M is idempotent if M2 = M .

Proposition 3.24

If B is idempotent,

(i) its eigenvalues λ are 0 or 1,

(ii) its trace is its rank.

Proof

(i) If λ is an eigenvalue of B, with eigenvector x, Bx = λx with x �= 0. Then

B2x = B(Bx) = B(λx) = λ(Bx) = λ(λx) = λ2x,

so λ2 is an eigenvalue of B2 (always true – that is, does not need idempo-
tence). So

λx = Bx = B2x = . . . = λ2x,

and as x �= 0, λ = λ2, λ(λ − 1) = 0: λ = 0 or 1.

(ii)

trace(B) = sum of eigenvalues

= # non-zero eigenvalues

= rank(B).
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Corollary 3.25

rank(P ) = p, rank(I − P ) = n − p.

Proof

This follows from Corollary 3.23 and Proposition 3.24.

Thus n = p + (n− p) is an instance of the Rank–Nullity Theorem (‘dim source
=dim Ker + dim Im’): Blyth and Robertson (2002a), Theorem 6. 4) applied
to P , I − P .

3.5.2 Quadratic forms in normal variates

We will be interested in symmetric projection (so idempotent) matrices P .
Because their eigenvalues are 0 and 1, we can diagonalise them by orthogonal
transformations to a diagonal matrix of 0s and 1s. So if P has rank r, a quadratic
form xT Px can be reduced to a sum of r squares of standard normal variates.
By relabelling variables, we can take the 1s to precede the 0s on the diagonal,
giving

xT Px = y2
1 + . . . + y2

r , yi iid N(0, σ2).

So xT Px is σ2 times a χ2(r)-distributed random variable.
To summarise:

Theorem 3.26

If P is a symmetric projection of rank r and the xi are independent N(0, σ2),
the quadratic form

xT Px ∼ σ2χ2(r).

3.5.3 Sums of Projections

As we shall see below, a sum-of-squares decomposition, which expresses a sum
of squares (chi-square distributed) as a sum of independent sums of squares
(also chi-square distributed) corresponds to a decomposition of the identity I
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as a sum of orthogonal projections. Thus Theorem 3.13 corresponds to I =
P + (I −P ), but in Chapter 2 we encountered decompositions with more than
two summands (e.g., SS = SSB + SST + SSI has three). We turn now to the
general case.

Suppose that P1, . . . , Pk are symmetric projection matrices with sum the
identity:

I = P1 + . . . + Pk.

Take the trace of both sides: the n × n identity matrix I has trace n. Each Pi

has trace its rank ni, by Proposition 3.24, so

n = n1 + . . . + nk.

Then squaring,

I = I2 =
∑

i
P 2

i +
∑

i<j
PiPj =

∑

i
Pi +

∑

i<j
PiPj .

Taking the trace,

n =
∑

ni +
∑

i<j
trace(PiPj) = n +

∑

i<j
trace(PiPj) :

∑

i<j
trace(PiPj) = 0.

Hence

trace(PiPj) = trace(P 2
i P 2

j ) (since Pi, Pj projections)

= trace((PjPi).(PiPj)) (trace(AB) = trace(BA))

= trace((PiPj)T .(PiPj)),

since (AB)T = BT AT and Pi, Pj symmetric and where we have defined
A = PiPiPj , B = Pj . Hence we have that

trace(PiPj)≥0,

since for a matrix M

trace(MT M) =
∑

i
(MT M)ii

=
∑

i

∑

j
(MT )ij(M)ji

=
∑

i

∑

j
m2

ij

≥ 0.

So we have a sum of non-negative terms being zero. So each term must be zero.
That is, the square of each element of PiPj must be zero. So each element of
PiPj is zero, so matrix PiPj is zero:

PiPj = 0 (i �= j).
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This is the condition that the linear forms P1x, . . . , Pkx be independent (The-
orem 4.15 below). Since the Pix are independent, so are the (Pix)T (Pix) =
xT PT

i Pix, that is, xT Pix as Pi is symmetric and idempotent. That is, the
quadratic forms xT P1x, . . . , xT Pkx are also independent.

We now have
xT x = xT P1x + . . . + xT Pkx.

The left is σ2χ2(n); the ith term on the right is σ2χ2(ni).
We summarise our conclusions.

Theorem 3.27 (Chi-Square Decomposition Theorem)

If
I = P1 + . . . + Pk,

with each Pi a symmetric projection matrix with rank ni, then

(i) the ranks sum:
n = n1 + . . . + nk;

(ii) each quadratic form Qi := xT Pix is chi-square:

Qi ∼ σ2χ2(ni);

(iii) the Qi are mutually independent.

(iv)
PiPj = 0 (i �=j).

Property (iv) above is called orthogonality of the projections Pi; we study or-
thogonal projections in §3.6 below.

This fundamental result gives all the distribution theory that we shall use.
In particular, since F -distributions are defined in terms of distributions of in-
dependent chi-squares, it explains why we constantly encounter F -statistics,
and why all the tests of hypotheses that we encounter will be F -tests. This
is so throughout the Linear Model – Multiple Regression, as here, Analysis of
Variance, Analysis of Covariance and more advanced topics.

Note 3.28

The result above generalises beyond our context of projections. With the pro-
jections Pi replaced by symmetric matrices Ai of rank ni with sum I, the
corresponding result (Cochran’s Theorem) is that (i), (ii) and (iii) are equiva-
lent. The proof is harder (one needs to work with quadratic forms, where we
were able to work with linear forms). For monograph treatments, see e.g. Rao
(1973), §1c.1 and 3b.4 and Kendall and Stuart (1977), §15.16 – 15.21.
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3.6 Orthogonal Projections and Pythagoras’s
Theorem

The least-squares estimators (LSEs) are the fitted values

ŷ = Aβ̂ = A(AT A)−1AT y = AC−1AT y = Py,

with P the projection matrix (idempotent, symmetric) above. In the alternative
notation, since P takes the data y into ŷ, P is called the hat matrix, and written
H instead. Then

e := y − ŷ = y − Py = (I − P )y

(‘e for error’) is the residual vector. Thus

y = Aβ + ε = Aβ̂ + e = ŷ + e,

or in words,
data = true value + error = fitted value + residual.

Now

eT ŷ = yT (I − P )T Py

= yT (I − P )Py (P symmetric)

= yT (P − P 2)y

= 0,

as P is idempotent. This says that e, ŷ are orthogonal. They are also both
Gaussian (= multinormal, §4.3), as linear combinations of Gaussians are Gaus-
sian (§4.3 again). For Gaussians, orthogonal = uncorrelated = independent
(see § 4.3):

The residuals e and the fitted values ŷ are independent
(see below for another proof). This result is of great practical importance, in the
context of residual plots, to which we return later. It says that residual values
ei plotted against fitted values ŷi should be patternless. If such a residual plot
shows clear pattern on visual inspection, this suggests that our model may be
wrong – see Chapter 7.

The data vector y is thus the hypotenuse of a right-angled triangle in n-
dimensional space with other two sides the fitted values ŷ = (I − P )y and the
residual e = Py. The lengths of the vectors are thus related by Pythagoras’s
Theorem in n-space (Pythagoras of Croton, d. c497 BC):

‖y‖2 = ‖ŷ‖2 + ‖e‖2
.

In particular, ‖ŷ‖2≤‖y‖2 :
‖P̂ y‖2 ≤ ‖y‖2
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for all y. We summarise this by saying that

‖P‖ ≤ 1

that is P has norm < 1, or P is length-diminishing. It is a projection from
data-space (y-space) onto the vector subspace spanned by the least-squares
estimates β̂.

Similarly for I − P : as we have seen, it is also a projection, and by above,
it too is length-diminishing. It projects from y-space onto the orthogonal com-
plement of the vector subspace spanned by the LSEs.

For real vector spaces (as here), a projection P is symmetric (P = PT )
iff P is length-diminishing (‖P‖≤1) iff P is an orthogonal, or perpendicular,
projection – the subspaces Im P and Ker P are orthogonal, or perpendicular,
subspaces (see e.g. Halmos (1979), §75). Because our P := AC−1AT (C :=
AT A) is automatically symmetric and idempotent (a projection), this is the
situation relevant to us.

Note 3.29

1. The use of the language, results and viewpoint of geometry – here in n

dimensions – in statistics is ubiquitous in the Linear Model. It is very
valuable, because it enables us to draw pictures and visualise, or ‘see’,
results.

2. The situation in the Chi-Square Decomposition Theorem takes this further.
There we have k (≥ 2) projections Pi summing to I, and satisfying the
conditions

PiPj = 0 (i �= j).

This says that the projections Pi are mutually orthogonal: if we perform
two different projections, we reduce any vector to 0 (while if we perform
the same projection twice, this is the same as doing it once). The Pi are or-
thogonal projections; they project onto orthogonal subspaces, Li say, whose
linear span is the whole space, L say:

L = L1 ⊕ . . . ⊕ Lk,

in the ‘direct sum’ notation ⊕ of Linear Algebra.

3. The case k = 2 is that treated above, with P , I −P orthogonal projections
and L = L1⊕L2, with L1 = Im P = ker (I − P ) and L2 = Im (I − P ) =
ker P .

Theorem 3.30

(i) ŷ = Py ∼ N(Aβ, σ2P ).


